
Hans-Petter Halvorsen

https://www.halvorsen.blog

Raspberry Pi Pico
Potentiometers

• Introduction
–Raspberry Pi Pico
–Thonny Python Editor
–MicroPython

• Potentiometer
–PicoZero
–Potentiometer and LED

Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Introduction
• In this Tutorial we will show how we can use a

Potentiometer for Raspberry Pi Pico
• We will use MicroPython
• A Potentiometer is basically a variable resistor

and Potentiometers change their resistance when
you turn a dial/knob

• A Potentiometer has many Applications, we will
show some basic examples here

• Raspberry Pi Pico
• A Micro-USB cable
• A PC with Thonny Python Editor (or another

Python Editor)
• Breadboard
• Electronics Components like LED, Resistors,

Jumper wires, etc.
• Potentiometer(s)

What do you need?

• Raspberry Pi Pico is a microcontroller board
developed by the Raspberry Pi Foundation

• Raspberry Pi Pico has similar features as Arduino
devices

• Raspberry Pi Pico is typically used for Electronics
projects, IoT Applications, etc.

• You typically use MicroPython, which is a
downscaled version of Python, in order to program it

Raspberry Pi Pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1

Pi
co

 P
in

ou
t

https://www.raspberrypi.com/products/raspberry-pi-pico/

https://www.raspberrypi.com/products/raspberry-pi-pico/

Thonny
• Thonny is a simple and user-friendly

Python Editor
• Cross-platform: Windows, macOS and

Linux
• Built-in support for the Raspberry Pi Pico

hardware/MicroPython firmware
• Its free
• Download: https://thonny.org

https://thonny.org/

• MicroPython is a downscaled version of
Python

• It is typically used for Microcontrollers and
constrained systems (low memory, etc.)

• Examples of such Microcontrollers that
have tailormade MicroPython firmwares
are Raspberry Pi Pico and Micro:bit

MicroPython

https://micropython.orghttps://docs.micropython.org/en/latest/index.html

https://micropython.org/
https://docs.micropython.org/en/latest/index.html

• The first time you need to install the
MicroPython Firmware on your
Raspberry Pi Pico
• You can install the MicroPython

Firmware manually or you can use
the Thonny Editor

MicroPython Firmware

Install MicroPython Firmware using Thonny

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

Hans-Petter Halvorsen

https://www.halvorsen.blog

Potentiometer

Table of Contents

Potentiometer

A Potentiometer is basically a variable resistor and
Potentiometers change their resistance when you
turn a dial/knob. A Potentiometer has 3 legs.

Potentiometer Symbol:

Potentiometer Examples:

Potentiometer Wiring

https://pico.pinout.xyz

3.3VGNDAnalog
Pin

(0-3.3V)

Potentiometer

https://pico.pinout.xyz/

Correct use of Potentiometer on Breadboard

Hans-Petter Halvorsen

https://www.halvorsen.blog

MicroPython Code
Examples

Table of Contents

Potentiometer

Po
te

nt
io

m
et

er
from machine import ADC
from time import sleep

adcpin = 26
pot = ADC(adcpin)

while True:
adc_value = pot.read_u16()
print(adc_value)

volt = (3.3/65535)*adc_value
print(round(volt,2))

sleep(1)

ADC Value to Voltage Value

ADC = 0 -> 0v
ADC = 65535 -> 3.3v

The read_u16() function gives a value between 0 and 65535. It must be converted to a
Voltage Signal 0 - 3.3v

3.3𝑉

0

𝑦(𝑥) = 𝑎𝑥 + 𝑏
0𝑉

65535

𝑦(𝑥) =
3.3

65535
𝑥

This gives the following conversion formula:

Analog Pins: The built-in Analog-to-Digital Converter (ADC) on Pico is 16bit, producing
values from 0 to 65535.

Co
de

 v
2

from machine import ADC
from time import sleep

def ReadPotentiometer():
adcpin = 26
pot = ADC(adcpin)

adc_value = pot.read_u16()
volt = (3.3/65535)*adc_value

percentPot = ScalePercent(volt)

return percentPot

def ScalePercent(volt):
percent = (volt/3.3)*100
return int(percent)

while True:
potvalue = ReadPotentiometer()
print(potvalue)
sleep(1)

This code reads values from
the Potentiometer and
converts it to a value between
0 and 100%.
2 functions have been made to
make the code more structured
and reusable

Hans-Petter Halvorsen

https://www.halvorsen.blog

PicoZero

Table of Contents

PicoZero
• The picozero Python Library is

intended to be a beginner-friendly
library for using common electronics
components with the Raspberry Pi
Pico

• It can be used instead of the
machine Library in many cases

• You install it like an ordinary Python
Library using “pip install picozero” or
from the “Manage Packages”
window in the Thonny editor

https://pypi.org/project/picozero/
https://picozero.readthedocs.io
https://github.com/RaspberryPiFoundation/picozero

https://pypi.org/project/picozero/
https://github.com/RaspberryPiFoundation/picozero

Picozero + Potentiometer

https://picozero.readthedocs.io/en/latest/api.html#potentiometer-pot

https://picozero.readthedocs.io/en/latest/api.html

from picozero import Pot
from time import sleep

adcpin = 26
pot = Pot(adcpin)

while True:
potvalue = pot.value
print(round(potvalue,2))

potvoltage = pot.voltage
print(round(potvoltage,2))

sleep(0.5)Pi
co

Ze
ro

 P
ot

en
tio

m
et

er

Value between 0 (Min)
and 1 (Max)

Value between 0 (Min)
and 3.3 (Max)

Potentiometer and LED

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

LED Examples
Here we will show some examples where we
combine a Potentiometer and a LED
• Use the Potentiometer to control the

Brightness of the LED using Pulse Width
Modulation (PWM)

• Use the Potentiometer to control how fast the
LED should blink

Wiring the LED

GND

LED

R=270Ω

Pin1

LED Brightness Example
• We use the Potentiometer to control the

Brightness of the LED using Pulse Width
Modulation (PWM)

LE
D

Br
ig

ht
ne

ss
from machine import ADC, Pin, PWM
from time import sleep

adcpin = 26
pot = ADC(adcpin)

ledpin = 1
pwm = PWM(Pin(ledpin))
pwm.freq(1000)

while True:
adc_value = pot.read_u16()
pwm.duty_u16(adc_value)
sleep(0.1)

LED Blinking Speed Example
• We use the Potentiometer to control how fast the

LED should blink
• We have made a Potentiometer function that

gives a value between 0 and 100%
• Then we have made a Speed function that says
– If 0% -> Wait 5s (Slowest LED Speed)
– If 100%-> Wait 0.5s (Fastest LED Speed)

𝑦 − 𝑦! =
𝑦" − 𝑦!
𝑥" − 𝑥!

(𝑥 − 𝑥!)

𝑦 = −
4.5
100 𝑥 + 5

We have used the following formula:

LE
D

Bl
in

ki
ng

 S
pe

ed
from machine import ADC, Pin
from time import sleep

ledpin = 1
led = Pin(ledpin, Pin.OUT)

def ReadPotentiometer():
adcpin = 26
pot = ADC(adcpin)

adc_value = pot.read_u16()
volt = (3.3/65535)*adc_value
percentPot = ScalePercent(volt)
return percentPot

def ScalePercent(volt):
percent = (volt/3.3)*100
return percent

def BlinkSpeed(x):
y = -(4.5/100)*x + 5
y = round(y, 1)
return y

while True:
led.toggle()
potvalue = ReadPotentiometer()
waitTime = BlinkSpeed(potvalue)
sleep(waitTime)

• Raspberry Pi Pico:
https://www.raspberrypi.com/products/raspberry-pi-pico/

• Raspberry Pi Foundation:
https://projects.raspberrypi.org/en/projects?hardware[]=pico

• Getting Started with Pico:
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

• MicroPython:
https://docs.micropython.org/en/latest/index.html

Raspberry Pi Pico Resources

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects?hardware%5b%5d=pico
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico
https://docs.micropython.org/en/latest/index.html

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

